2.6.8.21. 使用高斯混合模型进行分割

此示例对图像直方图执行高斯混合模型分析,以找到将前景与背景分开的正确阈值。

plot GMM
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
from sklearn.mixture import GaussianMixture
rng = np.random.default_rng(27446968)
n = 10
l = 256
im = np.zeros((l, l))
points = l * rng.random((2, n**2))
im[(points[0]).astype(int), (points[1]).astype(int)] = 1
im = sp.ndimage.gaussian_filter(im, sigma=l / (4.0 * n))
mask = (im > im.mean()).astype(float)
img = mask + 0.3 * rng.normal(size=mask.shape)
hist, bin_edges = np.histogram(img, bins=60)
bin_centers = 0.5 * (bin_edges[:-1] + bin_edges[1:])
classif = GaussianMixture(n_components=2)
classif.fit(img.reshape((img.size, 1)))
threshold = np.mean(classif.means_)
binary_img = img > threshold
plt.figure(figsize=(11, 4))
plt.subplot(131)
plt.imshow(img)
plt.axis("off")
plt.subplot(132)
plt.plot(bin_centers, hist, lw=2)
plt.axvline(0.5, color="r", ls="--", lw=2)
plt.text(0.57, 0.8, "histogram", fontsize=20, transform=plt.gca().transAxes)
plt.yticks([])
plt.subplot(133)
plt.imshow(binary_img, cmap="gray", interpolation="nearest")
plt.axis("off")
plt.subplots_adjust(wspace=0.02, hspace=0.3, top=1, bottom=0.1, left=0, right=1)
plt.show()

脚本总运行时间:(0 分钟 0.748 秒)

Sphinx-Gallery 生成的库